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The full theory

Some axiomatizations of theories of henselian valued fields:

Th(C((t)), vt) = (K, v) hens. + vK ≡ Z + Kv ≡ C

Th(Qp, vp) = (K, v) hens. + vK ≡ Z + Kv ≡ Fp + v(p) = 1

Th(Fp((t)), vt) = (K, v) hens. + vK ≡ Z + Kv ≡ Fp + ???

Theorem (Denef–Schoutens 2003)

resolution of singularities =⇒ Th∃(Fp((t)), vt) decidable
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The ∀k∃-theory
We work in a language with 3 sorts K, Γ, k:

L =
{

+K ,−K , ·K , 0K , 1K ,+Γ, 0Γ, <Γ,+k,−k, ·k, 0k, 1k, v, res
}
.

An ∀k∃-sentence is a sentence of the form

(∀x1, . . . , xr ∈ k)(∃y1, . . . , ys ∈ K) ϕ(x,y)

with ϕ a quantifier-free L-formula.

Theorem

Let (K, v) and (L,w) be equichar. nontriv. hens. valued fields with
Kv ≡ Lw. Suppose that (K, v) |= ∀kx∃yϕ(x,y).

1 If Kv is perfect, then (L,w) |= ∀kx∃yϕ(x,y).

2 In general, there exists n ∈ N such that, with p = char(Kv),

(∀x1, . . . , xr ∈ Lv)(∃y1, . . . , ys ∈ Lp−n
)ϕ(x,y)
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The ∃-theory

Theorem

Let (K, v) and (L,w) be equichar. nontriv. hens. valued fields.
The following are equivalent:

1 Th∃(K, v) = Th∃(L,w)

2 Th∃(Kv) = Th∃(Lw)

3 Th∃(Kv) = Th∃(Lw) and Th∃(vK) = Th∃(wL)

Corollary

The existential theory

Th∃(Fp((t)), vt) “=” (K, v) equichar.nontriv.hens. + Kv ≡ Fp

is decidable.

But note: ∃-L versus ∃-L(t) = ∀K1 ∃-L (Denef–Schoutens)
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A simple proof

Recall that a valued field (K, v) with char(Kv) = p is tame if v is
henselian and defectless, vK is p-divisible and Kv is perfect.

Let K be the relative algebraic closure of Fp((t)) = Fp((Z)) in the
tame field Fp((Q)). Then

1 (K, vt) is a tame field with residue field Fp and value group Q.

2 Th∃(K, vt) = Th∃(Fp((t)), vt), since every finite extension of
Fp((t)) in K is isomorphic to Fp((t))

Tame fields with decidable value group and decidable residue field
are decidable (Kuhlmann 2015).
This implies that Th∃(Fp((t)), vt) is decidable.
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