

On the existential theory of equicharacteristic henselian valued fields

Arno Fehm
(University of Konstanz)

joint work with Sylvy Anscombe

AMS Fall Eastern Sectional Meeting
Special Session on Advances in Valuation Theory
Rutgers University
November 14, 2015

The full theory

Some axiomatizations of theories of henselian valued fields:

$$\text{Th}(\mathbb{C}((t)), v_t) = (K, v) \text{ hens.} + vK \equiv \mathbb{Z} + Kv \equiv \mathbb{C}$$

The full theory

Some axiomatizations of theories of henselian valued fields:

$$\text{Th}(\mathbb{C}((t)), v_t) = (K, v) \text{ hens.} + vK \equiv \mathbb{Z} + Kv \equiv \mathbb{C}$$

$$\text{Th}(\mathbb{Q}_p, v_p) = (K, v) \text{ hens.} + vK \equiv \mathbb{Z} + Kv \equiv \mathbb{F}_p + v(p) = 1$$

The full theory

Some axiomatizations of theories of henselian valued fields:

$$\text{Th}(\mathbb{C}((t)), v_t) = (K, v) \text{ hens.} + vK \equiv \mathbb{Z} + Kv \equiv \mathbb{C}$$

$$\text{Th}(\mathbb{Q}_p, v_p) = (K, v) \text{ hens.} + vK \equiv \mathbb{Z} + Kv \equiv \mathbb{F}_p + v(p) = 1$$

$$\text{Th}(\mathbb{F}_p((t)), v_t) = (K, v) \text{ hens.} + vK \equiv \mathbb{Z} + Kv \equiv \mathbb{F}_p + ???$$

The full theory

Some axiomatizations of theories of henselian valued fields:

$$\text{Th}(\mathbb{C}((t)), v_t) = (K, v) \text{ hens.} + vK \equiv \mathbb{Z} + Kv \equiv \mathbb{C}$$

$$\text{Th}(\mathbb{Q}_p, v_p) = (K, v) \text{ hens.} + vK \equiv \mathbb{Z} + Kv \equiv \mathbb{F}_p + v(p) = 1$$

$$\text{Th}(\mathbb{F}_p((t)), v_t) = (K, v) \text{ hens.} + vK \equiv \mathbb{Z} + Kv \equiv \mathbb{F}_p + ???$$

Theorem (Denef–Schoutens 2003)

resolution of singularities $\implies \text{Th}_{\exists}(\mathbb{F}_p((t)), v_t)$ decidable

The $\forall^k \exists$ -theory

We work in a language with 3 sorts K, Γ, k :

$$\mathcal{L} = \left\{ +^K, -^K, \cdot^K, 0^K, 1^K, +^\Gamma, 0^\Gamma, <^\Gamma, +^k, -^k, \cdot^k, 0^k, 1^k, v, \text{res} \right\}.$$

An $\forall^k \exists$ -sentence is a sentence of the form

$$(\forall x_1, \dots, x_r \in k)(\exists y_1, \dots, y_s \in K) \varphi(\mathbf{x}, \mathbf{y})$$

with φ a quantifier-free \mathcal{L} -formula.

The $\forall^k \exists$ -theory

We work in a language with 3 sorts K, Γ, k :

$$\mathcal{L} = \left\{ +^K, -^K, \cdot^K, 0^K, 1^K, +^\Gamma, 0^\Gamma, <^\Gamma, +^k, -^k, \cdot^k, 0^k, 1^k, v, \text{res} \right\}.$$

An $\forall^k \exists$ -sentence is a sentence of the form

$$(\forall x_1, \dots, x_r \in k)(\exists y_1, \dots, y_s \in K) \varphi(\mathbf{x}, \mathbf{y})$$

with φ a quantifier-free \mathcal{L} -formula.

Theorem

Let (K, v) and (L, w) be equichar. nontriv. hens. valued fields with $Kv \equiv Lw$. Suppose that $(K, v) \models \forall^k \mathbf{x} \exists \mathbf{y} \varphi(\mathbf{x}, \mathbf{y})$.

The $\forall^k \exists$ -theory

We work in a language with 3 sorts K, Γ, k :

$$\mathcal{L} = \left\{ +^K, -^K, \cdot^K, 0^K, 1^K, +^\Gamma, 0^\Gamma, <^\Gamma, +^k, -^k, \cdot^k, 0^k, 1^k, v, \text{res} \right\}.$$

An $\forall^k \exists$ -sentence is a sentence of the form

$$(\forall x_1, \dots, x_r \in k)(\exists y_1, \dots, y_s \in K) \varphi(\mathbf{x}, \mathbf{y})$$

with φ a quantifier-free \mathcal{L} -formula.

Theorem

Let (K, v) and (L, w) be equichar. nontriv. hens. valued fields with $Kv \equiv Lw$. Suppose that $(K, v) \models \forall^k \mathbf{x} \exists \mathbf{y} \varphi(\mathbf{x}, \mathbf{y})$.

- 1 If Kv is perfect, then $(L, w) \models \forall^k \mathbf{x} \exists \mathbf{y} \varphi(\mathbf{x}, \mathbf{y})$.

The $\forall^k \exists$ -theory

We work in a language with 3 sorts K, Γ, k :

$$\mathcal{L} = \left\{ +^K, -^K, \cdot^K, 0^K, 1^K, +^\Gamma, 0^\Gamma, <^\Gamma, +^k, -^k, \cdot^k, 0^k, 1^k, v, \text{res} \right\}.$$

An $\forall^k \exists$ -sentence is a sentence of the form

$$(\forall x_1, \dots, x_r \in k)(\exists y_1, \dots, y_s \in K) \varphi(\mathbf{x}, \mathbf{y})$$

with φ a quantifier-free \mathcal{L} -formula.

Theorem

Let (K, v) and (L, w) be equichar. nontriv. hens. valued fields with $Kv \equiv Lw$. Suppose that $(K, v) \models \forall^k \mathbf{x} \exists \mathbf{y} \varphi(\mathbf{x}, \mathbf{y})$.

- ① If Kv is perfect, then $(L, w) \models \forall^k \mathbf{x} \exists \mathbf{y} \varphi(\mathbf{x}, \mathbf{y})$.
- ② In general, there exists $n \in \mathbb{N}$ such that, with $p = \text{char}(Kv)$,

$$(\forall x_1, \dots, x_r \in Lv)(\exists y_1, \dots, y_s \in L^{p^{-n}}) \varphi(\mathbf{x}, \mathbf{y})$$

Theorem

Let (K, v) and (L, w) be equichar. nontriv. hens. valued fields.

The following are equivalent:

- ① $\text{Th}_{\exists}(K, v) = \text{Th}_{\exists}(L, w)$
- ② $\text{Th}_{\exists}(Kv) = \text{Th}_{\exists}(Lw)$

Theorem

Let (K, v) and (L, w) be equichar. nontriv. hens. valued fields.

The following are equivalent:

- ① $\text{Th}_{\exists}(K, v) = \text{Th}_{\exists}(L, w)$
- ② $\text{Th}_{\exists}(Kv) = \text{Th}_{\exists}(Lw)$
- ③ $\text{Th}_{\exists}(Kv) = \text{Th}_{\exists}(Lw)$ and $\text{Th}_{\exists}(vK) = \text{Th}_{\exists}(wL)$

The \exists -theory

Theorem

Let (K, v) and (L, w) be equichar. nontriv. hens. valued fields.

The following are equivalent:

- ① $\text{Th}_{\exists}(K, v) = \text{Th}_{\exists}(L, w)$
- ② $\text{Th}_{\exists}(Kv) = \text{Th}_{\exists}(Lw)$
- ③ $\text{Th}_{\exists}(Kv) = \text{Th}_{\exists}(Lw)$ and $\text{Th}_{\exists}(vK) = \text{Th}_{\exists}(wL)$

Corollary

The existential theory

$\text{Th}_{\exists}(\mathbb{F}_p((t)), v_t)$ “=” (K, v) equichar.nontriv.hens. + $Kv \equiv \mathbb{F}_p$

is decidable.

The \exists -theory

Theorem

Let (K, v) and (L, w) be equichar. nontriv. hens. valued fields.

The following are equivalent:

- ① $\text{Th}_{\exists}(K, v) = \text{Th}_{\exists}(L, w)$
- ② $\text{Th}_{\exists}(Kv) = \text{Th}_{\exists}(Lw)$
- ③ $\text{Th}_{\exists}(Kv) = \text{Th}_{\exists}(Lw)$ and $\text{Th}_{\exists}(vK) = \text{Th}_{\exists}(wL)$

Corollary

The existential theory

$\text{Th}_{\exists}(\mathbb{F}_p((t)), v_t)$ “=” (K, v) equichar.nontriv.hens. + $Kv \equiv \mathbb{F}_p$

is decidable.

But note: \exists - \mathcal{L} versus \exists - $\mathcal{L}(t) = \forall_1^K \exists$ - \mathcal{L} (Denef–Schoutens)

A simple proof

Recall that a valued field (K, v) with $\text{char}(Kv) = p$ is *tame* if v is henselian and defectless, vK is p -divisible and Kv is perfect.

A simple proof

Recall that a valued field (K, v) with $\text{char}(Kv) = p$ is *tame* if v is henselian and defectless, vK is p -divisible and Kv is perfect.

Let K be the relative algebraic closure of $\mathbb{F}_p((t)) = \mathbb{F}_p((\mathbb{Z}))$ in the tame field $\mathbb{F}_p((\mathbb{Q}))$.

A simple proof

Recall that a valued field (K, v) with $\text{char}(Kv) = p$ is *tame* if v is henselian and defectless, vK is p -divisible and Kv is perfect.

Let K be the relative algebraic closure of $\mathbb{F}_p((t)) = \mathbb{F}_p((\mathbb{Z}))$ in the tame field $\mathbb{F}_p((\mathbb{Q}))$. Then

- ① (K, v_t) is a tame field with residue field \mathbb{F}_p and value group \mathbb{Q} .

A simple proof

Recall that a valued field (K, v) with $\text{char}(Kv) = p$ is *tame* if v is henselian and defectless, vK is p -divisible and Kv is perfect.

Let K be the relative algebraic closure of $\mathbb{F}_p((t)) = \mathbb{F}_p((\mathbb{Z}))$ in the tame field $\mathbb{F}_p((\mathbb{Q}))$. Then

- ① (K, v_t) is a tame field with residue field \mathbb{F}_p and value group \mathbb{Q} .
- ② $\text{Th}_{\exists}(K, v_t) = \text{Th}_{\exists}(\mathbb{F}_p((t)), v_t)$, since every finite extension of $\mathbb{F}_p((t))$ in K is isomorphic to $\mathbb{F}_p((t))$

A simple proof

Recall that a valued field (K, v) with $\text{char}(Kv) = p$ is *tame* if v is henselian and defectless, vK is p -divisible and Kv is perfect.

Let K be the relative algebraic closure of $\mathbb{F}_p((t)) = \mathbb{F}_p((\mathbb{Z}))$ in the tame field $\mathbb{F}_p((\mathbb{Q}))$. Then

- ① (K, v_t) is a tame field with residue field \mathbb{F}_p and value group \mathbb{Q} .
- ② $\text{Th}_{\exists}(K, v_t) = \text{Th}_{\exists}(\mathbb{F}_p((t)), v_t)$, since every finite extension of $\mathbb{F}_p((t))$ in K is isomorphic to $\mathbb{F}_p((t))$

Tame fields with decidable value group and decidable residue field are decidable (Kuhlmann 2015).

This implies that $\text{Th}_{\exists}(\mathbb{F}_p((t)), v_t)$ is decidable.

Bibliography

- ① S. Anscombe and A. Fehm. The existential theory of equicharacteristic henselian valued fields. arXiv:1501.04522, 2015.
- ② J. Denef and H. Schoutens. On the decidability of the existential theory of $\mathbb{F}_p[[t]]$. *Fields Inst. Commun.* 33, 2003.
- ③ F.-V. Kuhlmann. The algebra and model theory of tame valued fields. To appear in *J. reine angew. Math.*, 2015.